Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Use of Self-Organizing Maps to Estimate Furrow Sediment Loss in Western U.S.

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  2022 ASABE Annual International Meeting  2200425.(doi:10.13031/aim.202200425)
Authors:   Bradley A. King, David L. Bjorneberg
Keywords:   Artificial intelligence, Furrow irrigation, Model, Sediment loss, Self-organizing map, Surface irrigation, Transfer learning.

Abstract. The area irrigated by furrow irrigation in the U.S. has been steadily decreasing but still represents about 20% of the total irrigated area in the U.S. Furrow irrigation sediment loss is a major water quality issue in the western U.S. and a method for estimating sediment loss is needed to quantify the environmental impacts and estimate effectiveness and economic value of conservation practices. The objective of the study was to investigate the use of the unsupervised machine learning technique Kohonen self-organizing maps (KSOM) to predict furrow sediment loss. Historical published and unpublished data sets containing measurements of furrow irrigation sediment loss in the western U.S. were assembled into a furrow sediment loss data set comprising over 2000 measurements. Despite the immunity of KSOMs to measurement variability, the inherent variability in measured furrow sediment loss limited the ability of a KSOM model to reliability predict furrow sediment loss. Furrow sediment loss was under predicted by 44% on average with a linear regression coefficient of determination of 0.6. The KSOM model was placing little weight on measured sediment loss in the input data set, indicating that it was clustering the data based on input parameters defining the hydraulic and soil conditions. This outcome was used to develop a transfer learning approach for predicting furrow sediment loss. The transfer learning approach used a KSOM to cluster data records of similar hydraulic and soil conditions in the data set. Mean measured sediment loss and furrow flow rate of each cluster was determined based on data set vectors assigned to a cluster by the KSOM. Furrow sediment loss prediction was obtained by applying an input vector to the KSOM to identify the cluster the input vector most closely matches. Then the mean measured sediment loss of the identified cluster was adjusted for any difference between the input vector furrow flow rate and cluster mean furrow flow rate to obtain a prediction of furrow sediment loss. Predicted furrow sediment loss was 16% less than measured sediment loss on average with a coefficient of determination of 0.82. When the data set was randomly split into model development (90%) and validation (10%) data sets the prediction results were similar.

(Download PDF)    (Export to EndNotes)