Click on “Download PDF” for the PDF version or on the title for the HTML version.


If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Visual Control of Cotton-picking Rover and Manipulator using a ROS-independent Finite State Machine

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan www.asabe.org

Citation:  2019 ASABE Annual International Meeting  1900779.(doi:10.13031/aim.201900779)
Authors:   Kadeghe G Fue, Edward M Barnes, Wesley M Porter, Glen C Rains
Keywords:   Cotton-picking, Cotton harvesting, SMACH, Robot

Abstract. Small rovers are being developed to pick cotton as bolls open. The concept is to have several of these rovers move between rows of cotton, and when bolls are detected, use a manipulator to pick the bolls. To accomplish this goal, each cotton-picking robot needs to accomplish three movements; rover must move forward/backward, left/right and the manipulator must be able to move to harvest the detected cotton bolls. Control of these actions can have several states and transitions. Transitions from one state to another can be complex but using ROS-independent finite state machine (SMACH), adaptive and optimal control can be achieved. SMACH provides task level capability to deploy multiple tasks to the rover and manipulator. In this research, a cotton-picking robot using a stereo camera to locate end-effector and cotton bolls is developed. The robot harvests the bolls using a 2D manipulator that moves linearly horizontally and vertically. The boll 3-D position is determined by calculating stereo camera parameters, and the decision of the finite state machine guides the manipulator and the rover to the destination. PID control is deployed to control rover movement to the boll. We demonstrate preliminary results in a direct-sun simulated environment. The system achieved a picking performance of 17.3 seconds per boll. Also, it covered the task by navigating at a speed of 0.87 cm per second collecting 0.06 bolls per second. In each mission, the system was able to detect all the bolls but one.

(Download PDF)    (Export to EndNotes)