Click on “Download PDF” for the PDF version or on the title for the HTML version.


If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Demonstration of a Pilot-Scale Plant for Biomass Torrefaction and Briquetting

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan www.asabe.org

Citation:  Applied Engineering in Agriculture. 34(1): 85-98. (doi: 10.13031/aea.12376) @2018
Authors:   Mark A. Severy, Charles E. Chamberlin, Anthony J. Eggink, Arne E. Jacobson
Keywords:   Biomass, Biomass conversion technology, Bioenergy, Briquetting, Densification, Forest residuals, Pyrolysis, Torrefaction.

Abstract.

A semi-mobile torrefaction and densification pilot plant was constructed in order to determine ideal operating conditions and evaluate briquette quality and throughput rate using forest residuals as the input feedstock. Experiments were conducted at various conditions with feedstock moisture content ranging from 4% to 25% (wet basis), reactor residence times of 10 and 20 min, and final product temperatures between 214°C and 324°C. Optimal operating conditions, evaluated based on throughput rate, specific electricity demand, torrefied briquette grindability, briquette volumetric energy density, and briquette durability, were identified to occur with a short residence time (10 min), low feedstock moisture content (<11% wet basis), and high final product temperature between 267°C and 275°C. These conditions were able to process 510 to 680 kg h-1 (wet basis) feedstock with a dry mass yield of 79% to 84% to produce torrefied biomass with a higher heating value of 21.2 to 23.0 MJ kg-1 (dry basis) compared to 19.6 MJ kg-1 for the original biomass. Torrefied briquettes produced at these conditions had a neatly stacked packing density of 990 kg m-3 and a volumetric energy density of 21,800 MJ m-3. Their specific grinding energy was an average 37% of the energy required to grind a raw biomass briquette. These torrefied briquettes were more durable (94% DU) than raw briquettes (85% DU) directly following production, but were less durable after undergoing temperature and humidity fluctuations associated with long distance transportation (74% DU for torrefied and 84% DU for raw biomass briquettes). Results from this pilot plant are promising for commercial scale production of high quality torrefied briquettes and should lead to additional research and development of a torrefaction system optimized for a higher throughput rate at these conditions.

(Download PDF)    (Export to EndNotes)