Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Performance Analysis of a Poultry Engineering Chamber Complex for Animal Environment, Air Quality, and Welfare Studies

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  Transactions of the ASABE. 59(5): 1371-1381. (doi: 10.13031/trans.59.11402) @2016
Authors:   Aditya Padavagod Shivkumar, Lingjuan Wang-Li, Sanjay B. Shah, Larry Stikeleather, Montserrat Fuentes
Keywords:   Air velocity, Animal environment, CFD, Flow testing, Poultry engineering chamber, Ventilation.

Abstract. Studies of animal welfare and air quality require good understanding of the production environment. This study evaluated the performance of a dedicated poultry engineering chamber complex (PECC) designed to conduct studies for enhancement in poultry production, air quality, and animal welfare. The performance evaluation of the PECC was carried out by direct flow testing and computational fluid dynamics (CFD) modeling. The flow rate measurements at six different blower speeds () in each of the six chambers and the corresponding pressure drops across the system indicated the effects of structural geometry and components on the flow characteristics. There was no significant difference in mean flow rate among chambers (p = 0.956). The flow in the animal-occupied zone (core chamber) was simulated using CFD, and the results were validated using field measurements. The average air velocities at bird height at blower speeds of 600 and 1200  obtained using direct measurements were 0.794 ±0.15 m s-1 and 1.706 ±0.305 m s-1, respectively, and the average air velocities obtained using CFD models were 0.809 ±0.169 m s-1 and 1.642 ±0.395 m s-1, respectively. Error analysis at each measurement point indicated a maximum value of 13.59% at bird height due to the presence of feeders. Statistical analysis showed no significant difference between measured and simulated results (p = 0.5415). The normalized mean square error was 0.007, indicating good agreement of simulated results with measurements. Certain regions in the animal-occupied zone had lower air velocity on average and therefore higher mean surface temperature of bird models in those regions, caused by the flocking effect.

(Download PDF)    (Export to EndNotes)