American Society of Agricultural and Biological Engineers



Click on “Download PDF” for the PDF version or on the title for the HTML version.


If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Investigation of the plant cell wall's molecular structure models using the finite element modeling

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan www.asabe.org

Citation:  Paper number  131587129,  2013 Kansas City, Missouri, July 21 - July 24, 2013. (doi: http://dx.doi.org/10.13031/aim.20131587129) @2013
Authors:   Hojae Yi, Virendra M Puri, M Shafayet Zamil
Keywords:   Plant Cell Wall Primary Cell Wall Cell Wall Growth Finite Element Method

Abstract. Interests in the plant cell wall have been growing, since it is where plants produce and store polysaccharides that can be utilized as the bio-based energy resources. To take full advantage of the plant cell wall, knowledge of its detailed structure is essential. Plant cell wall's ability to expand during the growth phase has been explained by hypothesized molecular structures focusing on interactions between major polysaccharides. Typical example of such an attempt is the sticky network model which suggests that relatively slender hemicelluloses are tethering cellulose microfibrils with hydrogen bonds to bear stresses induced by turgor pressure. The various mechanisms of relaxing this conjectured model to allow expansion of the cell wall explanation have been proposed including disruptions of the hydrogen bonds to loosen the cell wall. A finite element analysis was successfully used to simulate a proposed molecular structure model to examine its consequences from the perspective of mechanics, i.e., hydrogen bonded hemicellulose alone cannot provide enough strength for the cell wall to maintain its integrity under a typical turgor pressure. As a next step, the hypothesized cell wall loosening mechanisms are being investigated to examine its mechanical validity and efficiency. This study showcases an engineering approach contributing to the fundamental science that can potentially impact the field of biorenewable energy.

(Download PDF)    (Export to EndNotes)