Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Comparison of Sprinkler Droplet Size and Velocity Measurements using a Laser Precipitation Meter and Photographic Method

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  Paper number  131594348,  2013 Kansas City, Missouri, July 21 - July 24, 2013. (doi: @2013
Authors:   Bradley A. King, Troy W. Winward, David L. Bjorneberg
Keywords:   Sprinkler irrigation drop size drop velocity kinetic energy.

Abstract. Kinetic energy of water droplets has a substantial effect on development of a soil surface seal and infiltration rate of bare soil. Methods for measuring sprinkler droplet size and velocity needed to calculate droplet kinetic energy have been developed and tested over the past 50 years, each with advantages, disadvantages, and limitations. A laser precipitation meter and photographic method were used to measure droplet size and velocity from an impact sprinkler at three pressures and one nozzle size. Significant differences in cumulative volume drop size distributions derived from the two measurement methods were found, especially at the highest operating pressure. Significant differences in droplet velocities were found between measurement methods as well. Significant differences were attributed to differences in minimum drop sizes measured; 0.5mm for the photographic method versus 0.2 mm for the laser precipitation meter. The laser precipitation meter provided smaller cumulative volume drop size distributions compared to the photographic measurement method. The laser precipitation meter tended to provide greater drop velocities which were attributed to altitude differences at experimental sites. The difference in calculated droplet kinetic energy per unit volume based on drop and size velocity data from the laser precipitation meter and the photographic method ranged from +12.5 to -28%. The laser precipitation meter generally provided a lower estimate of sprinkler kinetic energy due to the measurement of a greater proportion of smaller drop sizes. Either method can be used to obtain drop size and velocity sprinkler drops needed to calculate sprinkler kinetic energy. The laser precipitation meter requires less skill and labor to measure drop size and velocity.

(Download PDF)    (Export to EndNotes)