Click on “Download PDF” for the PDF version or on the title for the HTML version.


If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Evaluation of Winter Freeze Damage Risk to Apple Trees in Global Warming Projections

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan www.asabe.org

Citation:  Transactions of the ASABE. 53(5): 1387-1397. (doi: 10.13031/2013.34895) @2010
Authors:   M. Baraer, C. A. Madramootoo, B. B. Mehdi
Keywords:   Apple trees, Climate change, Computer models, Freeze damage, Snow cover

Winter freeze damage affects fruit production regularly in the northern part of North America. This situation, which is related to climatic conditions, financially affects fruit producers and limits the affected areas to the use of cultivars that are freeze-resistant but do not always yield a sufficient market return. The purpose of this study is to conduct an experiment with a newly developed numerical model (W5L+) and its associated snow cover module to evaluate the effects of the projected climatic change on the risk of winter freeze damage to apple trees. The model W5L+ quantifies the risk of freeze damage occurrence at defined locations based on local meteorological records or projections. Risk quantification is achieved by screening daily meteorological time series with pre-identified parameters that are known to be proxies for conditions that result in freeze-damage. The model was parameterized using historical meteorological records from apple orchards in Farnham, southern Qubec, and descriptions of regional winter freeze damaging events that were recorded between 1920 and 2005. In 82% of the years studied, the model was able to identify correctly the order of magnitude of the recorded freeze events. During the same period, results suggest that extremely low temperatures and prolonged periods of low temperatures were responsible for the majority of damaging events. When used with climatic projections downscaled from a global climate model (GCM), the model predicted a decrease in freeze risk for apple trees at the Farnham orchards in the next 60 years. This trend is due to a decrease in extreme cold events as well as in prolonged periods of low temperature. The present study demonstrates the potential of the W5L+ modeling approach in studying the impact of climate change on the occurrence of damaging freezes. However, the predictions need to be verified by using the model with a large range of agro-climatic conditions and climate projections.

(Download PDF)    (Export to EndNotes)