Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  Transactions of the ASABE. 51(6): 2061-2069. (doi: 10.13031/2013.25409) @2008
Authors:   J. W. Gaskin, C. Steiner, K. Harris, K. C. Das, B. Bibens
Keywords:   Agricultural residues, Biochar, Bioenergy, Black carbon, Carbon sequestration, Charcoal, Plant nutrition, Pyrolysis, Soil fertility, Soil organic carbon

The removal of crop residues for bio-energy production reduces the formation of soil organic carbon (SOC) and therefore can have negative impacts on soil fertility. Pyrolysis (thermoconversion of biomass under anaerobic conditions) generates liquid or gaseous fuels and a char (biochar) recalcitrant against decomposition. Biochar can be used to increase SOC and cycle nutrients back into agricultural fields. In this case, crop residues can be used as a potential energy source as well as to sequester carbon (C) and improve soil quality. To evaluate the agronomic potential of biochar, we analyzed biochar produced from poultry litter, peanut hulls, and pine chips produced at 400C and 500C with or without steam activation. The C content of the biochar ranged from 40% in the poultry litter (PL) biochar to 78% in the pine chip (PC) biochar. The total and Mehlich I extractable nutrient concentrations in the biochar were strongly influenced by feedstock. Feedstock nutrients (P, K, Ca, Mg) were concentrated in the biochar and were significantly higher in the biochars produced at 500C. A large proportion of N was conserved in the biochar, ranging from 27.4% in the PL biochar to 89.6% in the PC biochar. The amount of N conserved was inversely proportional to the feedstock N concentration. The cation exchange capacity was significantly higher in biochar produced at lower temperature. The results indicate that, depending on feedstock, some biochars have potential to serve as nutrient sources as well as sequester C.

(Download PDF)    (Export to EndNotes)