Click on “Download PDF” for the PDF version or on the title for the HTML version.


If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Developing Biodegradable Plastics from starch

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan www.asabe.org

Citation:  Paper number  RRV07130,  ASABE/CSBE North Central Intersectional Meeting. (doi: 10.13031/2013.24179) @2007
Authors:   Olayide Oyeyemi Fabunmi, Lope G Tabil, Peter R Chang, Satyanarayan Panigrahi
Keywords:   Starch, biodegradable, material properties, composites, synthetic polymers

The diversity and ubiquity of plastic products substantially testify to the versatility of the special class of engineering materials known as polymers. However, the non-biodegradability of these petrochemical-based materials has been a source of environmental concerns and hence, the driving force in the search for green alternatives for which starch remains the frontliner. Starch is a natural biopolymer consisting predominantly of two polymer types of glucose namely amylose and amylopectin. The advantages of starch for plastic production include its renewability, good oxygen barrier in the dry state, abundance, low cost and biodegradability. The longstanding quest of developing starch-based biodegradable plastics has witnessed the use of different starches in many forms such as native granular starch, modified starch, plasticized starch and in blends with many synthetic polymers, both biodegradable and non-biodegradable, for the purpose of achieving cost effectiveness and biodegradation respectively. In this regard, starch has been used as fillers in starch-filled polymer blends, thermoplastic starch (TPS) (produced from the combination of starch, plasticizer and thermomechanical energy), in the production of foamed starch and biodegradable synthetic polymer like polylactic acid (PLA) with varying results. However, most starch-based composites exhibit poor material properties such as tensile strength, yield strength, stiffness and elongation at break, and also poor moisture stability. This therefore warranted scientific inquiries towards improving the properties of these promising starch-based biocomposites through starch modification, use of compatibilizers and reinforcements (both organic and inorganic), processing conditions, all in the hope of realizing renewable biodegradable substitutes for the conventional plastics.

(Download PDF)    (Export to EndNotes)