Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Summer Heat Waves — Extreme Years

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  2007 ASAE Annual Meeting  074084.(doi:10.13031/2013.23106)
Authors:   John A Nienaber, G LeRoy Hahn, Tami M Brown-Brandl, Roger A Eigenberg
Keywords:   Heat stress, Cattle, Heat indices, Hot weather, Climate records, Model comparisons

The performance of four heat stress indices was compared for response to known events. A 12-yr period of weather data was analyzed for occurrence of heat wave events at each of three locations--Grand Island and Concord, NE and Rockport, MO. Numerous events were detected at each location. The Temperature-Humidity Index (THI) was used to show the duration of events and characterize the intensity in terms of temperature and humidity. Three additional indices were used to provide a similar depiction, based on additional weather factors of solar radiation and wind speed incorporated in the index. Each index correctly identified the events at all locations based on the analysis of hourly records of temperature, humidity, solar radiation and wind speed. Comparisons among the three index values with the original THI value showed that the index computed by the adjusted THI model was the most sensitive for all events, giving emergency category warnings most frequently. The respiration rate (RR) model was generally the least sensitive in comparison, giving the least number of emergency warnings and estimating the greatest recovery time. The Accumulated Heat Load Units (AHLU) model generated an accumulative index value which generally maintained the emergency warning, for the very severe events, after the heat wave event had passed. In a comparison of the models and indices for a known severe heat wave that was responsible for the loss of about 5000 cattle in northeast Nebraska, it was apparent that dangerous heat waves exist beyond the coverage of the weather station network. Death losses indicated that the local conditions were more severe at the affected feedlots than at two nearby (35 km) weather stations that also had feedlots in the immediate area without cattle deaths, stressing the value of an on-site weather station. Future efforts to compare indices should focus on sites having both weather data and known records of livestock losses.

(Download PDF)    (Export to EndNotes)