Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

An Assessment of Gases in Oxygen-Deficient Hay Silos and the Effects of Forced Ventilation

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  Journal of Agricultural Safety and Health. 13(1): 83-95. (doi: 10.13031/2013.22314) @2007
Authors:   G. Kedan, P. Spielholz, T. Sjostrom, B. Trenary, R. E. Clark
Keywords:   Gases, Measurement, Silos, Ventilation

Many modern tower silos used in the agricultural industry for hay and grain storage are oxygen-limiting by design. Forced-air ventilation using a forage blower is a method commonly used to decrease concentrations of toxic and asphyxiant gases and to increase the O2 content within a silo headspace prior to worker entry. This article describes the methods used to measure gas concentrations and the results obtained from a pilot study by the Washington Fatality Assessment and Control Evaluation (FACE) program of two oxygen-limiting forage tower silos in eastern Washington State. The silos were monitored for oxygen (O2), nitrogen dioxide (NO2), and carbon dioxide (CO2). Measured O2 concentrations were low in all areas of the headspaces monitored for both silos. After beginning forced-air ventilation, O2 concentrations within the silo headspace returned to ambient levels within 8 to 20 min. Nitrogen dioxide levels exceeded the Washington Industrial Safety and Health Act (WISHA) short-term exposure limit (STEL) in the silo that was filled six days earlier (silo 2), but not in the silo that was filled four days earlier (silo 1). The NO2 concentration in silo 2 decreased to below the WISHA STEL within 15 min of starting ventilation but began to rise shortly after ventilation was stopped. Carbon dioxide, which was only measured in silo 1, was detected at 2% within the headspace of this silo. The carbon dioxide concentration decreased to <1% within 3 min of starting ventilation.

(Download PDF)    (Export to EndNotes)