Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Evolutionary strategy (ES) to Optimize Electronic Nose Sensor Selection

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  Computers in Agriculture and Natural Resources, 4th World Congress Conference, Proceedings of the 24-26 July 2006 (Orlando, Florida USA) Publication Date 24 July 2006  701P0606.(doi:10.13031/2013.21893)
Authors:   Changying Li, Paul Heinemann, Patrick Reed
Keywords:   electronic nose, sensor selection, covariance matrix adaptation evolutionary strategy, optimization, apple quality and safety

The high dimensionality of electronic nose data increases the difficulty of their use in classification models. Reducing this high dimensionality helps reduce variable numbers, improve classification accuracy, and reduce computation time and sensor cost. In this research, the Cyranose 320 electronic nose, which was used for apple defect detection, was optimized by selecting only the most relevant of its internal 32 sensors using different selection methods. The covariance matrix adaptation evolutionary strategy (CMAES), was applied and the average classification error rate of CMA over 30 random seed runs was 5.0% (s.d.=0.006). This study provided a robust and efficient optimization approach to reduce high data dimensionality of the electronic nose data, which substantially improved electronic nose performance in apple defect detection while potentially reducing the overall electronic nose cost for future specific applications.

(Download PDF)    (Export to EndNotes)