Click on “Download PDF” for the PDF version or on the title for the HTML version.


If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Deterministic and Stochastic Prediction of Atrazine Transport in Soils Displaying Macropore Flow

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan www.asabe.org

Citation:  Pp. 133-136 in Preferential Flow, Water Movement and Chemical Transport in the Environment, Proc. 2nd Int. Symp. (3-5 January 2001, Honolulu, Hawaii, USA), eds. D. D. Bosch and K. W. King. St. Joseph, Michigan: ASAE  701P0006.(doi:10.13031/2013.2133)
Authors:   A. Shirmohammadi, H. Montas, L. Bergstrom, K. Coyne, S. Wei, and T. Gish
Keywords:   modeling, macropore flow, deterministic, stochastic

Preferential flow plays a dominant role in water and chemical transport. However, the main challenge remains to be its inclusion in the water quality models. Tension infiltrometer data indicated a pronounced macropore flow under both conventional and no-till systems in a sandy loam soil in Maryland. Models used to perform the simulations of atrazine transport included a management model, GLEAMS, a mechanistic model, MACRO, and a stochastic model. Results indicate that GLEAMS model provided reasonable prediction of the atrazine in top 30 cm, but failed to trace it down to the deeper depths. Macro model's two-domain component provided reliable results in the upper soil profile where macropores dominate. The stochastic approach was able to predict peak arrival times at 150 cm with a great accuracy for fields with slow release compound regardless of tillage. This study concluded that stochastic approach captures the field heterogeneity better than the deterministic models.

(Download PDF)    (Export to EndNotes)