Click on “Download PDF” for the PDF version or on the title for the HTML version.


If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

COMPARISON OF MEASURED AND SIMULATED PHOSPHORUS LOSSES WITH INDEXED SITE VULNERABILITY

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan www.asabe.org

Citation:  Transactions of the ASAE. 48(2): 557-565. (doi: 10.13031/2013.18330) @2005
Authors:   T. L. Veith, A. N. Sharpley, J. L. Weld, W. J. Gburek
Keywords:   Field-scale modeling, Nonpoint source, Pennsylvania Phosphorus Index, Risk, SWAT

Nonpoint-source losses of agricultural phosphorus (P) at field and watershed scales must be quantified to facilitate selection and placement of P control measures. Quantification of P loss has been pursued through field monitoring, simulation models, and risk assessment indices. However, the intended users of these methods differ, impacting each methods functional design and ease-of-use. For example, the Pennsylvania P Index, a risk assessment tool for planners, requires less discipline-specific knowledge and more readily available data than the Soil and Water Assessment Tool (SWAT), a complex, watershed-level, research-based simulation model. This study compared measured losses of P from the outlet of a 39.5 ha mixed land use watershed (FD-36) in south-central Pennsylvania with watershed-level losses predicted by SWAT. Measured watershed exports of dissolved P (0.06 kg ha-1) and total P (0.24 kg ha-1) during the 7-month sampling period were similar in magnitude to SWAT-predicted losses (0.05 and 0.73 kg ha-1, respectively). Additionally, the study compared field-level P losses predicted by SWAT with field-level vulnerabilities to P loss derived by the P Index. The P Index and SWAT categorized 73% of the 22 fields similarly in terms of vulnerability to P loss, with Pearson correlation significant at p = 0.07; all except one of the remaining six fields were over- or underpredicted by a single risk category. Results indicate that while actual P loss from FD-36 was small, three fields contributed a major proportion of this loss. Additionally, this study suggests that the P Index can provide land managers with a reliable assessment of where P loss occurs within a watershed, thus allowing more effective placement and selection of conservation practices, which lead toward improved downstream water quality.

(Download PDF)    (Export to EndNotes)