Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

Effects of Controlled Drainage on Water Table Recession Rate

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  Transactions of the ASABE. 60(3): 813-821 . (doi: 10.13031/trans.11922) @2017
Authors:   Samaneh Saadat, Laura Bowling, Jane Frankenberger, Kyle Brooks
Keywords:   Drainage water management, Managed drainage, Paired watershed approach, Tile drainage, Water table drawdown.

Abstract. Controlled drainage is a best management practice that decreases nitrate loads from subsurface drainage, but questions remain about optimal operation strategies. One unanswered question is whether the outlet should be lowered prior to or directly after a rainfall event to reduce the amount of time that the water table is at a level that would be detrimental to either trafficability or crop yield. The objective of this study was to determine how much controlled drainage lengthens the time needed for the water table to fall after a rainfall event, to inform possible improvement in the management of controlled drainage systems. This objective was addressed using water table recession rates from two pairs of controlled and free-draining fields located at the Davis Purdue Agricultural Center in Indiana over a period of nine years (2006-2014). At each pair, comparison of mean recession rates from the two fields indicated that controlled drainage reduced recession rate. The significance of the relationship between paired observations and the effect of controlled drainage was determined by a paired watershed approach using analysis of variance (ANOVA) and covariance (ANCOVA). Raising the outlet of the subsurface drainage system decreased the mean rate of water table recession by 29% to 62%, increasing the time needed for the water table level to fall from the surface to 30 and 60 cm depths by approximately 12 to 26 h and 24 to 53 h, respectively. Based on these results, it can be concluded that lowering the outlet before storm events would reduce the amount of time that the water table is at a detrimental level for either crop growth or trafficability. However, the trade-off between costs and benefits of active management depends on the sensitivity of the crop and probability of a severe storm.

(Download PDF)    (Export to EndNotes)