Click on “Download PDF” for the PDF version or on the title for the HTML version.

If you are not an ASABE member or if your employer has not arranged for access to the full-text, Click here for options.

A Rangeland Hydrology and Erosion Model

Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

Citation:  Transactions of the ASABE. 54(3): 901-908. (doi: 10.13031/2013.37115) @2011
Authors:   M. A. Nearing, H. Wei, J. J. Stone, F. B. Pierson, K. E. Spaeth, M. A. Weltz, D. C. Flanagan, M. Hernandez
Keywords:   Erodibility, Erosion control, Grazing, Green-Ampt, Hydrologic modeling, Infiltration, Kinematic wave, Model validation, Parameter estimation, Runoff, Semi arid, Soil conservation, USDA, USLE, WEPP

Soil loss rates on rangelands are considered one of the few quantitative indicators for assessing rangeland health and conservation practice effectiveness. An erosion model to predict soil loss specific for rangeland applications is needed because existing erosion models were developed from croplands where the hydrologic and erosion processes are different, largely due to much higher levels of heterogeneity in soil and plant properties at the plot scale and the consolidated nature of the soils. The Rangeland Hydrology and Erosion Model (RHEM) was designed to fill that need. RHEM is an event-based derivation of the WEPP model made by removing relationships developed specifically for croplands and incorporating new equations derived from rangeland data. RHEM represents erosion processes under disturbed and undisturbed rangeland conditions, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant communities by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. RHEM estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of a single rainfall event. Experiments were conducted to generate independent data for model evaluation, and the coefficients of determination (r2) for runoff and erosion predictions were 0.87 and 0.50, respectively, which indicates the ability of RHEM to provide reasonable runoff and soil loss prediction capabilities for rangeland management and research needs.

(Download PDF)    (Export to EndNotes)